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Abstract

To every morphism of X∗ a congruence fR on X∗, called kernel con-
gruence, and defined by ufRv iff f(u) = f(v) can be associated. We
characterize morphisms having a commutative kernel congruence and, in-
troducing the notion of the index of a morphism, we give a classification
of the morphisms of X∗. Moreover, a congruence with special proper-
ties, called hp-congruence is considered; every kernel congruence is an
hp-congruence, but the converse does not hold.

1 Introduction and basic notions

Let X∗ be the free monoid generated by the finite alphabet X , card(X) ≥ 2, let
1 be the identity of X∗ and let X+ = X∗\{1}. Every element of X∗ is called
a word and every subset L ⊆ X∗ is called a language over X . The length of
a word u ∈ X∗, i.e., the number of letters of u, is denoted by |u|. A mapping
α : X∗ → X∗ is called a morphism of X∗ if α(uv) = α(u)α(v) for all u, v ∈ X∗.
A morphism α is completely determined by the knowledge of the restriction of α
to the alphabet X . If f(X∗) = {1}, then the morphism f is said to be trivial.

Morphisms play a significant role and have been extensively studied in formal
languages. For example, closure properties of various classes of languages under
morphisms and interdependencies between morphisms and other language oper-
ations have been thoroughly investigated by the theory of AFL (Abstract Fami-
lies of Languages). On the other hand, the biologically motivated Lindenmayer-
system theory is based on morphisms: the synchronous development of cells
in an organism can be modelled by morphisms (developing rules) which are
iteratedly applied to a string of letters (cells).

In this paper we focus on the interdependencies between morphisms, con-
gruences, partial orders and codes.

In the end of this section, a congruence relation induced by a morphism f ,
called kernel congruence is defined. Section 2 focuses on morphisms preserv-
ing orders. Necessary and sufficient conditions under which inverse morphisms
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preserve orders are obtained. In Section 3, after recalling a characterization of
the classes of a kernel congruence using hypercodes and shuffle product ([3]),
we introduce the notion of the index of a morphism. This index is bounded by
the cardinality n of the alphabet. For every k ≤ n, the set Mk(x) of morphisms
of index k is nonempty and the family {Mk(x)| 0 ≤ k ≤ n} forms a strict
hierarchy.

Section 4 introduces the notion of an hp-congruence, which is a congruence
having the properties that one of its classes equals Y ∗, for some Y ⊆ X and the
other classes are shuffle products between certain hypercodes and Y ∗. While, in
view of the previous results, it is straightforward that every kernel congruence
is an hp-congruence, there are hp-congruences over X∗ which are not kernel
congruences for any morphism f . An example illustrating this situation is given
in the end of Section 4.

We end this section by stating some basic definitions and well-known facts.
For every morphism f of X∗, the relation fR defined on X∗ by ufRv ⇔ f(u) =
f(v) is an equivalence relation called the kernel equivalence of f (see, for example
[2]). Since fR is compatible, it is a congruence of X∗. The congruence fR will
be called the kernel congruence associated with f and the classes of fR will be
called f-classes. The kernel congruence is also known as nuclear congruence (see,
for example, [1]). Remark that fR is the identity if and only if f is injective.
When there is no possibility of confusion, we will write u ≡ v (f) instead of
u ≡ v (fR).

A congruence ρ of X∗ is said to be cancellative iff xuy ≡ xvy (ρ) implies
u ≡ v (ρ). It is easy to see that the congruence ρ is cancellative if and only if
the quotient monoid X∗/ρ is cancellative.

If f is a morphism of X∗, we denote by KER(f) the language defined by:

KER(f) = {u ∈ X∗|f(u) = 1}.

If f is a morphism of X∗, then: (i) the quotient monoid X∗/fR is isomorphic
to the submonoid f(X∗) of X∗, the congruence fR is cancellative and, (ii) there
exists a subalphabet (possibly empty) Y ⊆ X such that KER(f) = Y ∗.

2 Morphisms and partial orders

A morphism f of X∗ is called 1-free if f(u) = 1 implies u = 1, i.e. f is noneras-
ing. Such morphisms have been thoroughly studied in relation with propagating
DOL-systems, used in developmental biology (see for example [5]). It is easy to
see that the composition of 1-free morphisms is also a 1-free morphism.

We recall now the definitions of several partial orders on X∗ that will be
considered in the following (see for example [8]). Let u, v ∈ X∗. Then:

(1) Prefix order: u ≤p v iff v = ux for some x ∈ X∗.
(2) Suffix order: u ≤s v iff v = xu for some x ∈ X∗.
(3) Infix order: u ≤i v iff v = xuy for some x, y ∈ X∗.
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(4) Embedding order ≤e :

u ≤e v ⇔ u = u1u2 · · ·un, v = x0u1x1u2x2 · · ·unxn, for some ui, xi ∈ X∗.

The prefix (suffix) order is left (right) compatible and the embedding order is
compatible.

Let f be a morphism of X∗ and ≤ be a partial order on X∗. The morphism
f is said to preserve the order ≤ iff u ≤ v implies f(u) ≤ f(v).

It is known that every morphism f of X∗ preserves the prefix, suffix, infix
and embedding order.

If f is a morphism of X∗ and ≤ a partial order on X∗, then f is said to
stricly preserve the partial order ≤ if u < v implies f(u) < f(v).

Proposition 2.1 Let f be a morphism of X∗. The following properties are
equivalent: (1) f is 1-free; (2) f strictly preserves the embedding order; (3) f
strictly preserves the infix order; (4) f strictly preserves the prefix order; (5) f
strictly preserves the suffix order.

Proof. (1) ⇒ (2). The relation u <e v implies |u| < |v| hence |f(u)| <e |f(v)|
since f does not erase letters.

(2) ⇒ (1). For every u ∈ X+, 1 <e u implies f(1) <e f(u), hence f is 1-free.
In a similar way it can be shown that (1) is equivalent to (3), (4), (5). 2

If ≤ is an order relation on X∗ then a language L is called ≤-convex if
u ≤ x ≤ v, u, v ∈ L implies x ∈ L (see, for example [6]).

If X = {a, b}, f(a) = 1 and f(b) = a, then f(X∗) = a∗, a convex language
for all the orders ≤p, ≤s, ≤i and ≤e.

If X = {a}, then the language C = {a2, a3 } is ≤e-convex. However the
injective 1-free morphism f(a) = a2 does not map C onto a ≤e-convex language.
Indeed, f(a2) = a4 ≤e a5 ≤e a6 = f(a3) but there is no word u such that
f(u) = a5.

If f is a morphism of X∗, then f(u) ≤e f(v) does not in general imply
u ≤e v. For example, let X = {a, b}, f(a) = ab and f(b) = abab. Then
f(a) = ab ≤e abab = f(b) but a 6≤e b. This example shows that the same
assertion holds also for the prefix, suffix and infix orders.

The following result gives necessary and sufficient conditions under which
such examples cannot arise. Recall that a code is a nonempty set A ⊆ X+

with the property: x1x1 . . . xn = y1y2 . . . ym and xi, yj ∈ L for all i and j imply
n = m and yi = yi for all i. A nonempty set L ⊆ X+ is a prefix code if u ≤p v,
u, v ∈ L implies u = v.

Proposition 2.2 Let f be a morphism of X∗. The following properties are
equivalent:

(i) f(u) ≤p f(v) implies u ≤p v;
(ii) f is injective and f(X) is a prefix code;
(iii) card(f(X)) = card(X) and f(X) is a prefix code.
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Proof. The equivalence (ii) ⇔ (iii) follows as, by a result of [8], a morphism f
is injective iff f(X) is a code and card(f(X)) = card(X).

Let us show that (i) ⇒ (ii). The morphism f is 1-free. Indeed, let a 6=
b, a, b ∈ X and suppose f(a) = 1. Then f(a) ≤p f(b) hence a ≤p b – a
contradiction.

The morphism f is injective. Indeed f(u) = f(v) implies u ≤p v and v ≤p u,
which means u = v. If we consider two elements f(a), f(b) ∈ f(X), a, b ∈ X ,
with f(a) ≤p f(b), from (i) we deduce that a ≤p b, which implies a = b.
Consequently, f(X) is a prefix code.

For the implication (ii) ⇒ (i), consider f(u) ≤p f(v). If f(u) = f(v) then,
as f is injective, we have that u = v.

Assume now that f(u) <p f(v) and assume by absurd that u is not a prefix
of v. Then one of the next cases holds:

• v <p u, that is u = vu′, u′ 6= 1. Then we have f(u) = f(v)f(u′). As f is
1-free this implies f(v) is a proper prefix of f(u) - a contradiction.

• u = u1au2, v = u1bv2, u1, u2, v2 ∈ X∗, a, b ∈ X , a 6= b. Then, f(u) =
f(u1)f(a)f(u2) and f(v) = f(u1)f(b)f(v2). As f(X) is a prefix code, f(a) 6<p

f(b) and f(b) 6<p f(a), which implies that f(u) is not a prefix of f(v) - a
contradiction.

Both cases led to contradictions, therefore our initial assumption that u is
not a prefix of v was false. 2

By symmetry, an analogous result can be obtained for suffix order, by re-
placing the prefix order with suffix order and the prefix code with suffix code.
However, a similar result does not hold for infix order, as shown by the following
example.

Example. Consider the injective morphism of {a, b, c}∗ defined by f(a) =
bab, f(b) = baa, f(c) = aab. Then f({a, b, c}) is an infix code but we can find
baa = f(b) ≤i f(ac) = babaab with b 6≤i ac.

3 Morphisms and kernel congruences

In this section we recall a result of [3], showing that the classes of a kernel
congruence can be described by using a special class of codes, the hypercodes.
Morphisms having a commutative kernel congruence are characterized and, in-
troducing the notion of index of a morphism, we give a classification of the
morphisms of X∗.

A hypercode (see [7], [8]) is a nonempty set H ⊆ X+ that contains no pair of
comparable words relatively to the embedding order ≤e, i.e. u ≤e v, u, v ∈ H ,
implies u = v. Every hypercode over a finite alphabet is finite.

Proposition 3.1 ([3]) Let f be a morphism of X∗, fR be the corresponding
kernel congruence and let Y ⊆ X be the subalphabet of X such that Y ∗ =
KER(f). Then:
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(i) For every class L of fR, there exists a hypercode H such that L = H ⋄Y ∗

where ⋄ denotes the shuffle product. Furthermore L is a regular language.
(ii) The morphism f of X∗ is 1-free iff every class L 6= {1} of fR is a

hypercode. 2

As shown in ([3]), the congruence fR is syntactic, i.e. there exists a language
T such that fR = PT where PT is the syntactic congruence of T . (Recall that if
L ⊆ X∗ is a language over X , then the syntactic congruence PL of L is defined
by: u ≡ v (PL) iff, for all x and y, (xuy ∈ L ⇔ xvy ∈ L).)

If f is a 1-free morphism, the classes 6= {1} of the congruence fR are hy-
percodes and therefore finite sets. The quotient monoid X∗/fR is hence infi-
nite. Furthermore the monoid X+ is a disjoint union of hypercodes Hi, i.e.
X+ = ∪i≥1Hi and for each i and j there is some k for which HiHj ⊆ Hk.

Every injective morphism f is a 1-free morphism and every class 6= {1} is
a hypercode containing only one word. If X = {a, b} and f(a) = a = f(b),
then f is a 1-free morphism and the classes of fR are {1} and the hypercodes
Xn, n ≥ 0.

A congruence ρ is said to be commutative if the quotient monoid X∗/ρ is
commutative. If f is a morphism, then its kernel congruence is commutative if
and only if f(X∗) is a commutative submonoid of X∗. The commutativity of
the congruence fR implies that all the classes of fR are commutative languages.
In particular, if f is 1-free then the classes 6= {1} of fR are commutative hyper-
codes.

For example, if X = {a, b} and f(a) = a = f(b), then the classes 6= {1} of
fR are the commutative hypercodes {Xn|n ≥ 1}.

The next proposition gives a complete description of all the possible 1-free
morphisms f having a commutative congruence fR.

Proposition 3.2 Let X = {a1, a2, · · · , an} and let f be a 1-free morphism of
X∗. Then the congruence fR of f is commutative ⇔ f(ai) = pmi where i =
1, 2, · · · , n, p is a primitive word and each mi is a positive integer.

Proof. (⇒) Since fR is commutative, aiaj and ajai, i 6= j, are in the same class.
Hence f(ai)f(aj) = f(aj)f(ai). Since f(ai) 6= 1, f(aj) 6= 1 we have f(ai) = pmi

and f(aj) = pmj for some primitive word p and positive integers mi, mj . As the
choice of the letters ai, aj was arbitrary, we will get the same primitive word p
by using different letters. Hence f(ai) = pmi for i = 1, 2, · · · , n.

(⇐) Immediate, because f(ai)f(aj) = f(aj)f(ai) for any i, j. 2

If f, g are morphisms of X∗, then it is easy to see that gR ⊆ (fg)R. In
particular, fR ⊆ f2

R and hence we have the following chain:

fR ⊆ f2
R ⊆ · · · ⊆ fk

R ⊆ · · ·

If, for some n, fn
R = fn+1

R , then fn
R = fn+i

R for all i ≥ 0. The next result shows
that the above chain is always finite.
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Proposition 3.3 ([4]) Let f be a morphism of X∗ with |X | = n. Then:

fn
R = fn+1

R 2.

It follows that for any morphism f of X∗ with |X | = n, the equality f r(u) =
f r(v), r > n, implies fn(u) = fn(v). Let k be the least non-negative integer
such that fk

R = fk+1

R and call this integer the index of f . The index of a
morphism is always less or equal to the cardinality of the alphabet X and, if
g = fk, then g2(u) = g2(v) implies g(u) = g(v).

A morphism f is of index 0 if and only if f is injective. If X = {a}, then
the morphisms of index 0 are the ones that map the letter a into any positive
power of a, while the morphism mapping a to 1 is the only morphism of index
1.

If X = {a, b}, the trivial morphism (which maps everything into 1) is of
index 1 and the morphism f : f(a) = 1, f(b) = a is of index 2. Since |X | = 2,
then all the morphisms are of index k ≤ 2.

Proposition 3.4 Let |X | = n, let M(X) be the set of all morphisms and let
Mk(X), 0 ≤ k ≤ n, be the set of all morphisms of index i ≤ k of X∗. Then:

(i) Mk(X) 6= ∅, 0 ≤ k ≤ n, and we have the strict hierarchy:

M0(X) ⊂ M1(X) ⊂ · · · ⊂ Mk(X) ⊂ · · · ⊂ Mn(X) = M(X)

(ii) If f ∈ Mk(X), the morphism f is an injective morphism of the submonoid
fk(X∗) and f induces an injective morphism of the quotient monoid X∗/fk

R.

Proof. (i) Let X = {a1, a2,· · · , an}. It is clear that Mn(X) = M(X) and that
M0(X) is the set of the injective morphisms and hence non empty. Furthermore
M0(X) ⊂ M1(X). Let k with 1 < k < n and define the morphism fk by:

fk(a1) = a2, fk(a2) = a3, · · · , fk(ak−1) = ak

fk(ak) = fk(ak+1) = · · · = fk(an) = 1

It is easy to see that the index of fk is k. Because the index is by definition
the least non-negative integer k such that fk

R = fk+1

R , a morphism of index k
cannot also be of index k − 1. This shows that Mk−1(X) is strictly contained
in Mk(X).

(ii) Suppose that f(u) = f(v), u, v ∈ fk(X∗). Then u = fk(r), v = fk(s),
r, s ∈ X∗, and fk+1(r) = fk+1(s). Since the index of f is k, then u = fk(r) =
fk(s) = v and f is injective on fk(X∗).

Let S = X∗/fk
R and let [u] denote the class of u modulo fk

R. Define the
mapping φ : S → S by φ([u]) = [f(u)]. It is easy to see that this mapping φ
is well defined and that φ is a morphism of the monoid S. If φ([u]) = φ([v]),
then f(u) ≡ f(v) (fk

R), fk+1(u) = fk+1(v) and hence fk(u) = fk(v). Therefore
u ≡ v (fk

R), [u] = [v] and φ is injective. 2
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4 Hp-congruences

We have seen how, given a morphism f : X∗ −→ X∗, we can associate to it
a congruence of X∗. This congruence has the properties that its classes are
hypercodes or shuffle products of a free monoid with hypercodes (Proposition
3.1.) In this section we consider congruences having the above properties. As
their classes are hypercodes or shuffle products of free monoids with hypercodes,
such congruences will be called hypercode-congruences or shortly hp-congruences.

An hp-congruence of the monoid X∗ is a congruence R of X∗ satisfying the
properties:

(i) There uniquely exists a subalphabet (possibly empty) Y ⊆ X , Y 6= X ,
such that Y ∗ is a class of R.

(ii) Every class A 6= Y ∗ of R is of the form A = H ⋄ Y ∗ where H is a
hypercode over X\Y and ⋄ is the shuffle product.

A strict hp-congruence is an hp-congruence of X∗ such that Y = ∅. This
is equivalent to the fact that Y ∗ = {1} and that all the classes 6= {1} of the
hp-congruence are hypercodes.

Examples of strict hp-congruences.
(1) It immediately follows that if f is an 1-free morphism, the kernel con-

gruence fR is a strict hp-congruence of X∗.
The set of all the singletons is a strict hp-congruence corresponding to the

injective morphisms.
(2) The congruence π defined by u ≡ v (π) iff p(u) = p(v), where p(u) is the

set of all the permutations of the letters of the word u, is a strict hp-congruence
of X∗. The classes of π are {1} and {p(u)|u ∈ X+}.

(3) Let X = {a1, a2, · · · , ak} and let α be the equivalence defined on X∗ by
u ≡ b (α) iff |u| = |v| and u = aix, v = aiy with ai ∈ X . It is immediate that
α is a congruence. If H is a class 6= {1}, then all the words in H have the same
length and hence H is a hypercode. Therefore α is a strict hp-congruence.

(4) Let X = {a, b} and let R be a strict hp-congruence. Define the relation
α(R) by u α(R) v iff u ≡ v (R) and ua = vb where ux denotes the number of
occurrences of the letter x in the word u. The relation α(R) is a congruence.
Each class of α(R) is a subset of a class of R and hence either {1} or a hypercode.
Hence α(R) is a strict hp-congruence.

Let R1 and R2 be two strict hp-congruences of X∗. By R1 ⊆ R2, we mean
that u ≡ v (R1) implies u ≡ v (R2). This defines a partial order in the family
of the strict hp-congruences of X∗.

Proposition 4.1 Every strict hp-congruence is contained in a maximal strict
hp-congruence.

Proof. Let R(X) be the family of strict hp-congruences of X∗, let R ∈ R(X)
and let {Ri|i ∈ I} be a chain of strict hp-congruences such that R ⊆ Ri. Let
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T =
⋃

i∈I Ri, i.e. T is the congruence defined by u ≡ v(T ) iff there exists i ∈ I
such that u ≡ v(Ri).

T is a congruence of X∗. Moreover, T is a strict hp-congruence containing
R. Indeed, let H 6= {1} be a class of R and, for every i ∈ I, let Hi be the class
of Ri containing H . Then H and each Hi are hypercodes. Let W = ∪i∈IHi.
W is a class of T . If u, v ∈ W , then u, v ∈ Hi for some i ∈ I and u ≤e v implies
u = v. Hence W is a hypercode. Since {1} is a class for each Ri, {1} is also a
class of T . It follows then that T is a strict hp-congruence of X∗ containing R.

Since the union of strict hp-congruences in a chain is also a strict hp-
congruence, we can use the Zorn’s Lemma. Therefore for every strict hp-
congruence R of X∗, there exists a maximal strict hp-congruence containing
R. 2

The strict hp-congruence S = {1} ∪ {Xn| n ≥ 1} is a maximal strict hp-
congruence because Xn is a maximal hypercode.

It is easy to see that every hypercode can be embedded in a maximal hyper-
code. We consider in the following 1-free morphisms f of X∗ having one of the
following properties:

• all the nontrivial classes of fR are maximal hypercodes;
• at least one nontrivial class of fR is a maximal hypercode.
For example, if X = {a, b} and f(a) = f(b) = a, then the nontrivial classes

are of the form Xn, n > 0. It is clear that Xn is a maximal hypercode. The fol-
lowing proposition shows that if all the nontrivial classes of a kernel congruence
are maximal hypercodes, then they are of the form Xn, n ≥ 1.

Proposition 4.2 If the nontrivial classes of the hp-congruence fR of a 1-free
morphism f are maximal hypercodes, then each class is of the form Xn, n ≥ 0.

Proof. Let X = {a1, a2, · · · , am} and let H ∈ fR, H 6= {1}, be a maximal
hypercode. This implies that for every u ∈ X+ there exists h ∈ H such that
either u ≤e h or h ≤e u.

If m = 1, then H is a singleton, hence H = Xn.
Suppose m ≥ 2. Let a1 = a, a2 = b and let A and B be the classes containing

respectively a and b.
Suppose that A 6= B. Since {a} and {b} are not maximal hypercodes, A must

contain a word u of the form u = xby with xy 6= 1. If not, since b2 6∈ A, A∪{b2}
is a hypercode, in contradiction with the maximality of A. Similarly it can be
shown that B must contain a word v of the form v = rat with rt 6= 1. From
f(a) = f(u) = f(xby) = f(x)f(b)f(y), f(b) = f(v) = f(rat) = f(r)f(a)f(t)
follows f(a) = f(x)f(r)f(a)f(t)f(y). This implies f(x) = f(r) = f(t) = f(y) =
1. Since xy 6= 1 and f is 1-free, we have f(x)f(y) = f(xy) 6= 1, a contradiction.

Therefore A = B, a, b ∈ A and consequently we have X ⊆ A. Since A
is maximal, A = X . As the product of classes is contained in a class, Xn is
contained in a class that is a maximal hypercode. This implies Xn is a class.
Hence fR = ∪n≥0X

n. 2
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In the following example, a 1-free morphism f is given such that at least
one class of fR is a maximal hypercode and at least one class is not a maximal
hypercode.

Example. Let X = {a, b} and let f(a) = b2 and f(b) = b. Then f(a) = f(b2)
which implies a ≡ b2 (fR). The hypercode H = {a, b2} is a maximal hypercode
and a class of the hp-congruence fR. However {b} is also a class of fR, but {b}
is not a maximal hypercode, because for example b ∈ {a2, b} which is a maximal
hypercode.

If f is a nontrivial morphism of X∗, then the congruence fR is an hp-
congruence of X∗. Furthermore fR is strict iff KER(f) = {1}, that is, the
subalphabet Y is empty.

Let R be an hp-congruence of X∗. We consider now the problem of associ-
ating to R a morphism fR such that R = fR. The next proposition shows that
this is not always possible.

Proposition 4.3 There exists at least one hp-congruence for which there is no
morphism f having this hp-congruence as its kernel congruence.

Proof. Let X = {a, b} and consider the following strict hp-congruence R. For
any n ≥ 1, the language Xn is split into two parts An = {an} and Bn =
Xn\{an}. The hp-congruence R consists of the following classes:

{1}, An, Bn, n = 1, 2, · · ·

R is an hp-congruence. Indeed, it is immediate that R is an equivalence relation.
Let x ∈ X+ with |x| = k. One of the following two cases can occur.
Case 1. x = ak. Then, xAn, Anx ⊆ An+k, and xBn, Bnx ⊆ Bn+k.
Case 2. x = rbs, rs ∈ X∗. Then, xAn, Anx, xBn, Bnx ⊆ Bn+k. This
implies R is compatible and therefore a congruence. Since the classes of R not
containing 1 consist of words of the same length, they are all hypercodes.

We have shown therefore that R is an hp-congruence.
Assume now, by reductio ad absurdum, that there exists a morphism f such

that R = fR.
Notice first that, if U is a class of R, then u ∈ U implies that the set p(u) of

the words obtained from u by a permutation of the letters of u is contained in
U . This implies in particular that f(uv) = f(vu) for all u, v ∈ X∗.

Consequently, if a, b ∈ X , f(ab) = f(ba), that is f(a)f(b) = f(b)f(a). ¿From
this we deduce (see for example [8]) f(a) = pm, f(b) = pq where m, q ≥ 1 and p
is a primitive word. As b2 ≡ ab(R), we have that pq+q = pm+q, that is m = q.
We arrived at a contradiction as m = q implies f(a) = f(b) which further
implies a2 ≡ ab(fR), but a2 and ab belong to different classes of R = fR.

Consequently our initial assumption was false, and there is no morphism f
such that R = fR. 2

Consider the relation π on X∗ defined by u ≡ v (π) ⇔ p(u) = p(v) where
p(u) is the set of the words obtained by permuting the letters of u. This is
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a congruence of X∗ whose classes are {1} and the languages consisting of all
the permutations of a given word. Hence every class 6= {1} is a hypercode and
the quotient monoid X∗/π is commutative. Therefore the classes of π form a
commutative strict hp-congruence P = {1} ∪ {p(u)|u ∈ X+}.

References

[1] J.Berstel, D.Perrin, Theory of Codes, Academic Press, New York (1985).

[2] J.M.Howie, Automata and languages, Clarendon Press, Oxford (1991).

[3] M. Petrich and G. Thierrin, Congruences associated with DOL-schemes,
Proc. Amer. Mat. Soc. 102(1988), 787-793.

[4] C.M. Reis, Periodic endomorphisms of a free monoid, Semigroup Forum (to
appear).

[5] G.Rozenberg and A.Salomaa, The Mathematical Theory of L Systems, Aca-
demic Press, New York (1980).

[6] G. Thierrin, Convex languages, IRIA Symposium, Paris (1972) Automata,
Languages and Programming, North-Holland.

[7] G. Thierrin, The syntactic monoid of a hypercode, Semigroup Forum
6(1973), 227-231.

[8] H.J. Shyr, Free monoids and languages, Lecture Notes, Institut of Applied
Mathematics, National Chung-Hsing University, Taichung (1991).

[9] H.J. Shyr, Disjunctive languages on a free monoid, Information and Control
34(1977), 123-129.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WESTERN ONTARIO,

LONDON, ONTARIO, N6A 5B7 CANADA

10


